但是小型中子压榨反应炉,肯定是没有办法安装蒸汽轮机的,甚至连激光发电管道也没有办法安装。
黄豪杰眼前这台小型机,就是采用了超导磁流体发电系统,直接利用光辐射和直接热量加热金属钠,形成钠等离子体发电。
不过这个反应炉里面的dd核燃料仅仅只有01克,也是是100毫克。
100毫克dd固体核燃料之中,氘原子占了98,通过核聚变反应之后,理论上可以产生大约8500千瓦时的能量,反应瞬间是1800秒左右,平均发电量每秒472千瓦时左右。
但是黄豪杰此时此刻的实时监控数据显示,发电量却是每秒132~134千瓦时之间,发电量仅仅是相当于理论能量的28左右。
之所以出现能量转换效率非常低的情况,那就是热能利用率太低了。
小型机的核聚变过程中,为了减轻重量,目前只能使用磁流体发电系统。
而磁流体发电系统之中,56的光辐射能量需要先转换成为热能(光辐射加热金属钠),这个过程中能量转换效率约为80左右,经过这一轮转换之后就变成448热能。
光辐射转热能448,加上直接热能27,可以利用的热能总量就是718。
而磁流体发电机的热能利用率是40左右,这一转换电能就剩下2872左右,其他能量都白白浪费掉了。
黄豪杰看着眼前发烫起来的小型机苦恼起来,这个小型机由于这些无法利用的热量,正在疯狂的发热之中。
要不是使用的材料非常强大,机身那高达742摄氏度的高温,差不多可以融化钢铁了。
大型的中子压榨反应炉,可以利用蒸汽轮机将这些热量利用起来,小型机又不能安装蒸汽轮机。
实验室里面的制冷设备用来降温的电量都比发电量大,就算是安装在机甲里面,可以通过自然风冷散热,需要消耗的电能也不在少数。
显然这些热能不仅仅被浪费了,还成为了一个负担。
“中止反应。”
[收到。]
滴!真空腔室里面的压力突然迅速降低,核聚变反应被中止。
嘶!一股制冷喷雾笼罩在小型机上面。
中子压榨法制造的核聚变反应,是可以随时随地中止反应的,哪怕是系统出故障也是非常安全的。
如果凝聚态真空腔出故障,那么核聚变反应就不会发生;如果在反应过程中出故障,一旦凝聚态真空腔失效,没有了压力的压榨,核聚变反应会立刻中子;而dd核燃料本身是没有放射性的,产物氦也是没有放射性的。
最有可能出现的危险,就是失去压制的高温等离子体泄漏出来,不过这些最多造成一部分设备被烧坏罢了。
特别是大型的中子压榨反应炉,在运转期间是不允许人员进入核心区域的,所以就算是出现事故,危险性也非常低。
黄豪杰没有管那个正在冷却的小型机,而是转过身在全息电脑上面查阅着资料。